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SUMMARY 

 This thesis uses focused beam reflectance measurement (FBRM) in conjunction with a 

linear empirical model to measure the solid concentration in a nuclear waste simulant in situ. 

Nuclear waste represents a significant environmental hazard at the Hanford site in Washington 

State, and the research in this thesis works towards developing a means of monitoring the solid 

particles present in nuclear waste. The waste simulant, which consisted of six individual 

components mixed with water, was placed in a stirred vessel and monitored with FBRM at a range 

of concentrations. The assumptions inherent to the linear model, which incorporates 

experimentally obtained FBRM histograms from each of the simulant components, were assessed, 

and the model was applied to two- and three-component mixtures before being used to estimate 

the composition of the complete simulant. The linear model was capable of estimating the 

composition of the two-component system containing glass beads and tungsten shavings, and it 

was able to track changes in composition over time for this simplified system. For the other four 

components, the model yielded less accurate results. All three large components (alumina, silica, 

and glass beads from a larger size range) produced much fewer FBRM counts per unit mass of 

simulant than the smallest three components, making them difficult to detect when the small 

components were included in the monitored mixture. Silicon carbide, the smallest component in 

the waste simulant, saturated the FBRM probe at the concentration specified in the simulant, 

thereby impeding detection of the other five components. Ultimately, the model presented in this 

thesis can produce accurate composition estimates if the materials being used behave linearly 

under FBRM observation. For a simple two-component system with particles that backscatter a 

large percentage of incident light, the linear model has yielded accurate composition estimates 

with computation times on the order of a few seconds. Materials that generate few chord counts or 
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materials with nonlinear chord count behavior require more advanced models and signal 

processing to predict composition from their chord length histograms. For the full six-component 

simulant, the model used in this thesis lacked sufficient complexity to describe the behavior of the 

system. Further work is necessary to enhance the model’s ability to interpret data produced by 

multicomponent mixtures. 
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Chapter 1. Introduction 

 

1.1 Global Motivation 

 The Hanford site in Washington State held 53 million US gallons of radioactive waste.[1] 

Waste was continuously added to the tanks from the site’s opening in 1943 to the decommissioning 

of its last reactor in 1987.[2] The majority of the liquid waste has been extracted from the site’s 

holding tanks, but all solid waste remains, which accounts for 27 million US gallons of the total 

waste volume.[1] An additional 2.8 million US gallons of liquid waste could not be extracted from 

the tanks. Removing the remaining waste at Hanford and processing it into a form that will be 

stable for long-term storage is significant logistical challenge. 

Of Hanford’s 177 tanks, 149 are single-shell steel containers ranging in capacity from 

55,000 to 1,160,000 US gallons.[2] These tanks were designed to hold liquid waste for 10–20 years 

and have all exceeded their service lifetime, some several times over. While the majority of the 

liquid waste has been removed, the 2.8 million US gallons of liquid that remain continue to slowly 

leak through the corroded tank walls.[2] The environmental hazard posed by this leakage 

necessitates prompt measures to extract the Hanford waste from the on-site tanks.  

 Pumping liquid out of Hanford’s tanks is straightforward compared to extracting solid 

waste. Removing the solid waste from these aging tanks requires knowing the size distribution of 

its particles.[3, 4] Solid waste is to be resuspended in liquid before being transported as a slurry 

through pipes, and the particle size distribution of the waste will affect the design dimensions of 

the piping and the requisite liquid flow rate.[5] If the pipes are too narrow or the flow rate too slow, 

solid waste settles to the bottom of the pipes and causes blockages – particle settling is especially 
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concerning for radioactive material because it creates highly localized radiation levels and can 

cause a critical mass to accumulate.[4]  

 Each tank contains a unique mixture of waste products, requiring the particle size 

distribution in each tank to be measured independently.[3, 5] Over the years, waste products from 

different nuclear reactions were mixed indiscriminately in the tanks.[3] These unregulated additions 

have resulted in uncontrolled chemical changes in the tanks, which along with internal temperature 

gradients and unmonitored phase separation, have created tank compositions that are difficult to 

predict without taking direct measurements.[3] Sampling the tanks for offline testing is challenging 

because of the waste’s radioactivity, which makes samples difficult for human workers to interact 

with. These safety concerns make obtaining samples with the smallest possible sampling volume 

a priority; however, the tanks’ large internal volumes and heterogeneous makeup (waste in the 

tanks is a mixture of sludge, saltcake, and supernatant fluid) make obtaining a proper 

representative sample difficult within practical sampling volume constraints.[6] 

 Due to the difficulty of predicting the composition of the wastes in the tanks and the 

difficulty of obtaining proper offline samples, it is necessary to determine the size distribution in 

the tanks via online means that can be applied in situ. Hanford’s solid waste is thought to consist 

mostly of small dense particles and large soft agglomerates; however, the waste treatment design 

constraints and the measures to avoid settling are dictated by large hard agglomerates, which make 

up only a small percentage of the total waste volume.[7, 8] Closed-circuit particle grinders have been 

proposed to precisely control the particle size distribution of waste entering the waste treatment 

plant, but they too require a real-time sensor for measuring particle size to achieve size control.[5] 

Ultimately, an in situ method for particle sizing must handle a wide range of slurry densities and 
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compositions and must be able to detect small quantities of large particles, if it is to be practically 

applied to the Hanford waste. 

Focused beam reflectance measurement (FBRM) is an industry-standard technology for 

online measurement of particles that possesses the desired sensitivity and flexibility for use in the 

Hanford waste. FBRM is sensitive to low concentrations of particles, and it is routinely used by 

researchers to track nucleation events in crystallization.[9-11] The manufacturer of FBRM, Mettler-

Toledo, asserts that FBRM is functional in concentrated slurries or emulsions that are opaque.[12] 

FBRM is also capable of taking measurements more quickly (potentially one measurement every 

2 seconds) than many competing technologies. In situ video microscopy, which is capable of 

recording images quickly, requires image analysis algorithms with long computation times to 

compute accurate particle sizes.[13-15]  

While these advantages make FBRM an attractive option for use in the Hanford waste 

processing operations, adapting it for quantitative solid-phase monitoring requires additional 

numerical treatments to make practical use of the data it records, as FBRM does not directly 

measure particle size.[16] FBRM is traditionally used qualitatively, and a general means of applying 

its data to all particle systems does not currently exist. This thesis seeks to work towards a 

methodology for quantitatively interpreting FBRM data and applying it to size the Hanford waste, 

while also meeting the need for a method of monitoring a currently-used nonradioactive simulant. 

1.2 Specific Motivation 

 While in situ measurement of the Hanford waste’s composition is a long-term goal salient 

to the cleanup procedures proposed by the Department of Energy (DOE), of more immediate 

concern are the mixing experiments currently occurring at the National Energy Technology 
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Laboratory (NETL). NETL is investigating the ability of pulse-jet mixers to resuspend the solids 

in the Hanford wastes.[17-19] Mixing the waste slurries to achieve complete solid suspension is 

necessary for transport through pipes, for the reasons discussed earlier in Section 1.1. Solid settling 

in mixing tanks is also unacceptable, as safety concerns would necessitate frequent down-time to 

manually clean the vessels used in the waste treatment plant.[4] 

 NETL uses a nonradioactive simulant designed to approximate the size distribution and 

density of the Hanford waste, but they do not currently possess a means of in situ particle 

monitoring.[20, 21] As a result, they must evaluate the quality of mixing with visual metrics like 

cloud height and off-bottom suspension, both of which are measured with the naked eye.[18] A 

drawback to this approach is that, for particles small enough to create a milky suspension, it is 

impossible to visually inspect a mixing tank beyond the very edges of its contents. This makes 

determining the slurry composition at the center of the tank impossible. 

 This objective of this thesis is the development of a method for monitoring the solid phase 

of the NETL’s waste simulant in real-time. Using an empirical framework, this work uses FBRM 

to estimate the composition of the simulant slurry – specifically, the concentrations of the six 

particulate species that make up the NETL simulant are estimated to the best possible accuracy. 

Previous efforts for quantitative application of FBRM have focused on systems with a single 

particulate species; the methods described in this thesis can be generalized to any complex system 

containing diverse particles. 
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CHAPTER 2. Background and Theory 

2.1 FBRM Operating Principles 

 FBRM has been used for particulate monitoring since 1998.[22] The instrument uses light 

backscattering to estimate the quantity and size distribution of solid particles in a slurry. FBRM 

works by shining a laser beam into a mixture and rotating this laser in a circle, at a fixed velocity 

(shown in Figure 1A). When the laser beam crosses a solid particle, its light is scattered back 

towards the probe, where it is picked up by a detector.[12] The detector itself is part of the probe 

assembly, so only light that is scattered directly back towards the probe is measured. 

Backscattering continues until the laser moves off the particle, at which point the signal from the 

detector stops. Because the laser rotates at a fixed speed, the duration of each backscattering signal 

recorded by the detector can be converted into a chord — the length of the path taken by the laser 

across the particle surface (Figure 1B). These chords are counted and grouped according to their 

length to create a chord length histogram (CLH), which is a histogram that represents the 

distribution of particle sizes.  

Figure 1 – Schematic of FBRM probe operation. (A) The probe emits a laser that rotates at a fixed speed. (B) 
As the laser beam crosses particles, the probe detects the backscattered light. The duration of each pulse of 
backscattered light is translated into a chord length by multiplying by the laser rotation speed. Figure courtesy 
of Dan Griffin. 

(A) 

(B) 
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 The chord length histogram is a useful measure of many properties of the particulate 

system. The CLH has proven to be sensitive to changes in particle count,[23] average particle 

size,[24, 25] and particle shape.[26-28] However, the CLH is also influenced by many other factors. 

Some of these factors may not be related to solid phase transport, such as the index of refraction 

of the carrier fluid,[29, 30] the surface facets of the observed particles,[31] the opacity of the observed 

particles,[32] and the distance of the particles from the laser’s focal point.[33] Distinguishing the 

properties of the CLH that are affected only by particle size is critical to any practical application 

of FBRM. For example, an observed decrease in the average chord length during a crystallization 

experiment might be the result of secondary nucleation. However, this same observation might be 

the result of crystal growth – large crystals are translucent and do not backscatter light as 

consistently as small crystals, which prevents FBRM from measuring the full crystal diameter.[34] 

Chord length is not an explicit measurement of particle size, and inferring particle size information 

from a chord length histogram requires considerable care. 

2.2 Qualitative Uses of FBRM 

Due to the difficulty of quantitatively interpreting a CLH, FBRM is often used as a 

qualitative means of detecting major changes in a particulate system. While the shape of the CLH 

can change based on a number of optical factors related to the backscattering of the laser light, it 

is still sensitive to particle properties. 

2.2.1 Qualitative Monitoring and Crystallization Control 

 Based on the rate of change of certain chord count bins, it is possible to gain a qualitative 

understanding of crystallization kinetics. Increases in fine chord counts indicate that nucleation is 

occurring,[24, 35] and decreases in small counts accompanied by increases in larger chord counts 
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show crystal growth.[36] Using fine chord counts as a predictor for nucleation is a particularly useful 

qualitative measure, as the onset of nucleation can be measured for different solution 

concentrations to find the metastable zone limit.[11, 37-39] Additionally, monitoring nucleation is 

important in seeded crystallizations, in which the primary goal of seeding is to limit nucleation 

and force supersaturation to decrease via crystal growth alone.[39] 

This application of FBRM to monitor the onset of nucleation is most commonly used to 

measure induction time[37, 38, 40] – which is the time it takes for crystals to nucleate when a solution 

is cooled under a linear temperature profile. By preparing several solutions at different 

concentrations, then lowering the temperature until fine counts are observed with FBRM, it is 

possible to plot a concentration vs. temperature curve that predicts when nucleation should occur 

at any solution concentration. The definition of ‘fine’ chord counts is arbitrary and is chosen by 

experimenters based on the particular system, as different crystal geometries will produce chord 

counts of differing lengths when primary nucleation occurs.[16] Plotting a curve showing the onset 

of nucleation at each concentration alongside the solubility curve shows the width of the 

metastable zone, where the solution is supersaturated but does not crystallize into a solid phase. 

Adapting FBRM as a measure of nucleation behavior is also useful for crystallization 

control. While most measurements of induction time focus on characterizing primary nucleation 

behavior, FBRM is not limited to observing only primary nucleation events. Secondary nucleation, 

brought on by the presence of other crystals, is also observable by tracking changes in fine chord 

counts – FBRM can be used to monitor secondary nucleation and inform control policies that focus 

on growing large crystals.[41] Direct nucleation control (DNC) considers FBRM as a measure of 

both types of nucleation to control a crystallization with a concentration profile that is within the 

metastable zone, keeping the nucleation rate approximately constant to drive the system towards 
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crystal growth.[10] DNC assumes that the number of chord counts recorded per second is an 

approximation of the total nucleation rate; by keeping the nucleation rate constant via cycles of 

heating and cooling (or solvent/antisolvent addition), large narrowly-distributed crystals can be 

produced with no a priori knowledge of the crystal system.[10, 42-44]  

In addition to crystallization control, the real-time monitoring offered by FBRM allows for 

the implementation of alternative crystallization protocols that yield large average crystal sizes. 

Chew et al. formulated a method to reproducibly create crystals with desirable sizes by first cooling 

a saturated salt solution until nucleation is detected, then stabilizing the temperature and heating 

the mixture to dissolve small crystals.[45] The crystallizer is heated until the CLH shows a targeted 

coefficient of variation value (the ratio of the CLH standard deviation to the mean chord length), 

effectively creating seed crystals in situ.[45] Cooling again from this point to the target crystal yield 

produces crystals with a consistent size distribution. This approach, known as internal seeding, can 

be augmented with DNC in the initial cooling/heating phase to produce yet larger seed crystals.[46] 

Internal seeding crystallization can be further improved by implementing supersaturation control 

instead of linear cooling once the seed crystals are formed – cooling while maintaining a constant 

supersaturation value prioritizes growth and increases the final crystal size.[47] While none of these 

techniques make full quantitative use of the CLH, all are made possible by the FBRM’s ability to 

rapidly monitor solid phase changes. 

2.2.2 Monitoring Polymorphic Transitions 

 Because changes in particle shape affect the size and shape of the CLH, FBRM can be used 

to qualitatively monitor polymorphic transitions of crystals. Figure 2 shows the two methods 

researchers use to evaluate changes in particle shape: plots of the entire chord length range, and 

plots of the counts in specific regions of the CLH over time. 
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Figure 2 – FBRM visualization of imidacloprid polymorphic transition from Form II (needle-like) to Form I 
(flaky). (A) Unweighted (left curves) and square-weighted (right curves) CLHs, plotted at different times during 
the crystallization experiment. (B) Groupings of fine counts (0-50 µm), medium counts (50-150 µm), and coarse 
counts (150-300 µm) at every time point during the crystallization experiment. Reproduced with permission 
from Zhao et al.[36]  

 Figure 2A shows the chord counts measured by FBRM in a crystallization experiment for 

imidacloprid where a polymorphic transition from Form II to Form I is observed. The figure shows 

how the characteristic shape of the CLH can change as a particle species, in this case Form II 

imidacloprid, experiences a corresponding shape change. It should be noted that the time resolution 

shown in Figure 2A is somewhat coarse to avoid a dense and unreadable plot. To increase the time 

resolution while still showing qualitative changes in particle shape, the CLH is separated into large 

bins and summed, as in Figure 2B. In this plot, the changes of the fine, medium, and coarse counts 

over time can be tracked more easily. In Figure 2B, it can be seen that the rapid dissolution of 

crystals, which are assumed to be in Form II, occurs after 5 minutes, followed by the nucleation 

of new crystals, which are assumed to be Form I. Such an observation cannot be made from Figure 

2A, which shows the CLH at infrequent time points. The two types of plots shown and discussed 

above are often used by researchers for  CLH analysis to monitor and understand polymorphic 

transitions.[26-28, 36, 48] 

(A) (B) 
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 Because the shape of the CLH is sensitive to particle properties unrelated to shape, FBRM 

data is often corroborated with alternative monitoring instruments to insure that observed CLH 

changes correspond with changes in crystal shape. Offline microscopy can be used to verify 

particle shape, provided that it is possible to take representative samples during the crystallization 

experiment.[28] Particle vision measurement (PVM) is another common means of visually 

inspecting particle shape, as it allows for real time imaging of the particle system without the need 

for sampling, albeit with less resolution than offline microscopes.[26, 27, 36, 48] In situ Raman 

spectroscopy is another technique that is sensitive to real time changes in particle shape, and it has 

been used alongside FBRM for monitoring the polymorphic transition of D-mannitol.[37] All of 

these techniques are capable of providing a second source of shape monitoring to verify 

observations made with FBRM. 

2.3 Quantitatively Relating CLH to PSD 

2.3.1 Linear Model 

 Transforming a given CLH into a particle size distribution (PSD) and vice versa is possible 

if enough information about the particle system is known. For each particle scanned by the FBRM 

laser, the length of the chord it generates depends on the particle’s shape, rotation, and position.[22, 

33] A linear model can be used to combine the CLHs expected from each bin in the PSD, and 

thereby predict what the CLH of a particular batch of particles should look like. The relationship 

between chord length and particle size distributions can be modeled by the following linear 

correlation: 

 
, ,n m m n

c Ux
x c U ×

=

∈ ∈ ∈  
  (2.1) 
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where c is the CLH in bins from l1…lm+1 with m being the total number of chord length bins, x is 

the discretized PSD in bins from s1…sn+1 with n being the total number of particle size bins 

(elements in x have units of number of crystals per unit volume), and each element Uij is the 

probability that a particle of size si generates a chord between lengths lj and lj+1.[22, 49] 

The linear model makes two critical assumptions about the behavior of the CLH and the 

behavior of the particulate species. First, the chord counts are proportional to the number of 

particles. Under this assumption, the CLH produced by two particles of the same size must equate 

to double the single particle’s CLH[22]. If this assumption is invalid, multiplying an element of the 

PSD xi by its corresponding column in U would not accurately recreate the CLH of these particles. 

Second, the CLHs of different-size particles must be additive — the CLH produced by two 

particles of different sizes must be equal to the superposition of the individual CLHs of those 

particles. 

A model that assumes a linear relationship between chord counts and particle counts has 

been shown to be useful for crystallization control.[50] Even when FBRM is not used to directly 

measure particle size, a particle count estimate can be combined with other process analytical 

techniques to characterize a solid-liquid suspension, as was discussed in Section 2.2.1. The linear 

relationship between CLHs and particle size distributions generally holds true at low solid volume 

fractions; this relationship grows gradually more nonlinear as solids fraction increases, eventually 

reaching a saturation point where the addition of more solids to the mixture does not cause a chord 

count increase.[25] This saturation of the counts is thought to occur because of the increasing 

probability of overlapping particles as the suspension density increases.[51] FBRM will count a pair 

of overlapping particles only once, leading to decreased counts per suspended particle. The point 

at which linearity breaks down is unique to each particle species[52] and dependent on the particle 
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size.[25] Figure 3 shows total chord counts against solid fraction for calcite particles. It can be seen 

that the slope of chord counts decreases as the solid fraction increases, which indicates the 

saturation point’s dependence on particle size, depicting the chord counts per solid fraction curves 

for sieved fractions of calcite. 

 
Figure 3 – Counts versus solid fraction for different size ranges of calcite particles, reproduced with permission 
from Heath et al.[25] 

 For the calcite fractions shown in Figure 3, the counts produced by large particles saturate 

more slowly than the counts produced by small particles. While the curves of same-size particles 

of different species saturate at different rates, size always influences the saturation rate in a 

predictable manner.[52] Larger particles produce fewer counts per unit mass than small particles, 

and their chord count plots saturate more slowly than small particles — Figure 3 shows both of 

these points. 

The second assumption made by the linear model is that when particles from two size bins 

in the PSD are mixed, their CLH fingerprints must be additive. In a situation where there are two 

particles of different sizes in suspension, this assumption states that the CLH produced by these 

particles must still equate to the superposition of the particles’ individual CLHs.[22] This 
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assumption is what facilitates a matrix transformation between the CLH and the PSD. Tan et al. 

verified this assumption for the simple system of polystyrene spheres in deionized water; however, 

it is not guaranteed to hold when differently shaped particles are observed together, when particle 

shapes are more complex than spheres, or when the particles interact physically with each other 

(i.e. agglomeration or aggregation).[34] 

2.3.2 First-principles Approaches 

2.3.2.1 Geometric Modeling 

The elements of U have been estimated via numerous first-principles approaches in 

previous research. First-principles methods developed before 2008 neglected details of the light 

backscattering and considered the FBRM system from a purely geometric perspective.[29] Purely 

geometric models assumed that the width of the focused laser beam is effectively zero. These 

models assumed that the reflection of light is not impacted by 1) the distance between the particles 

and the laser focal point, 2) the refractive index of the suspension medium, or 3) the overlapping 

of particles in dense slurries.[34] Geometric models also assume that aspects of the particle surface 

such as curvature, smoothness, and translucence do not impede the detection of light backscattered 

into the probe.[53, 54]  

The most common geometric method for this calculation assumes an ellipsoidal cross-

section for all particles.[22, 55-57] Assuming that the particles being observed are spherical makes the 

model formulation simpler because spheres’ 2D cross-sections are the same regardless of rotation. 

Such geometric models based on spheres have been successfully applied to polymer systems and 

slurries of ground minerals.[25, 58] However, the spherical assumption does not produce accurate 

results for most crystal species, which have well-defined facets.  
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For particles with ideal light reflection characteristics, assuming that particles have an 

ellipsoidal cross-section can approximate the correlation between the particles’ size and the CLH 

obtained from FBRM .[56] An ellipse is defined by its semi-minor and semi-major axes a and b as 

such: 

 
2

;
4
sa b ra
r

= =  (2.2) 

where s is the particle’s equivalent spherical diameter and r is the aspect ratio between the major 

and minor axes. With these dimensions, it is possible to calculate the probability p of cutting a 

chord between lengths lj and lj+1 given a fixed angle α — the angle is calculated by assuming that 

the laser is incident at the particle’s edge on the minor axis,  
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where d is the shortest distance between the particle’s midpoint and the chord. Integrating the 

above probability equation from α = 0 to π gives the full probability of recording this chord length 

for a particle of equivalent spherical diameter si . From this probability, we construct a matrix U.[57] 
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    (2.4) 

This model is effective for particles with ideal reflection characteristics, but it deviates 

significantly from real data in the majority of cases. Particles with smooth surfaces backscatter 

incident light in a primarily specular fashion (meaning that the majority of incident light is 

reflected at the incoming light’s angle of incidence) – this causes most of the laser light contacting 
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the particle to be scattered away from the detector, which is located in the probe along with the 

source. Thus, fewer chord counts are generated, compared to the geometric model’s prediction for 

like-sized particles with ideal reflection characteristics.[29, 30, 59]  

 Geometric models also fail to describe the behavior of translucent particles under FBRM 

monitoring. Translucent particles allow a large percentage of incoming light to pass directly 

through them without registering a backscattering signal. Only the edges of these particles 

backscatter a large enough quantity of the laser beam to register a chord count – this edge detection 

results in a phenomenon known as chord splitting, where a large particle will produce two or more 

short chord counts instead of one long count as it is encountered by the laser.[22, 29] Figure 4 is a 

photomicrograph of a glass bead, which gives a visual explanation of chord splitting using the 

spherical glass bead as an example to illustrate how the dark edges of a translucent object are 

converted into chords. 

              

Figure 4 – Illustration of chord splitting on a photomicrograph of a 50 µm glass bead. The red line through the 
image represents the theoretical travel path of an FBRM laser. Dashed lines are drawn to show where the laser 
intersects with the dark parts of the particle. 
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 The photomicrograph in Figure 4 was taken using transmitted light, so the dark areas on 

the particle are regions where the light was reflected or scattered and did not reach the microscope 

eyepiece. An FBRM laser incident on this glass bead’s surface would be reflected in the same way: 

only the edges facilitate enough backscattering to register a chord count, while the clear center 

allows the majority of the laser’s intensity to pass through it, hence splitting one chord into two 

smaller chords. Additionally, particles with smooth surfaces like the glass bead in Figure 4 may 

scatter a yet smaller fraction of light back towards the detector when illuminated, shortening the 

chords further or preventing them from being recorded at all.[29, 30] Modern FBRM firmware 

features built-in edge detection to handle inconsistent scattering and increase the chance that the 

full width is measured,[60] but no means of signal processing can achieve a perfect solution to chord 

splitting. If the FBRM firmware is configured to convert large particle edges into single chords, it 

also concatenates chords generated by closely spaced small particles into larger chords. 

2.3.2.2 Modeling Backscattering 

Because geometric modeling is only effective for the small group of particles that 

backscatter light uniformly, the logical next step to improve the accuracy of first-principles models 

is including light reflection properties in the model formulation. Two papers by Kail et al. proposed 

a model that exhaustively simulated the optical mechanisms of an FBRM probe – in their case, the 

Lasentec D600L.[29, 30] Unlike the geometric model, this thorough approach modeled the changes 

in the CLH that occur due to laser beam broadening, intensity loss through the liquid phase, multi-

directional backscattering, and changing distance between particles and the laser focal point. By 

calculating both external scattering efficiency (the percentage of the light incident on the particle 

that is scattered back to the probe) and internal scattering efficiency (the total percentage of emitted 

light that reaches the detector inside the probe), the optical model could predict the FBRM probe’s 
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measured light intensity profile from a population of particles.[29] By applying a chord 

discrimination algorithm to convert the light intensity signal to measured chords, the CLH of a 

known particle population could be estimated – unlike the geometric model, this model correctly 

predicted the oversizing of small particles due to beam broadening and the chord splitting behavior 

exhibited by large particles.[30] 

This type of rigorous optical modeling was shown to be capable of accurately estimating 

the CLH produced during the crystallization of DL-threonine in water,[61] but rigorous first-

principles modeling is unsuitable for use in a nuclear waste system for several reasons. The 

principal difficulty in adapting this model for nuclear waste, or for a nuclear waste simulant, lies 

in the model’s requisite input information. A model capable of describing the light scattering 

behavior of large (>30 µm) particles requires knowledge of the particles’ surface orientation, 

surface texture, and transparency;[29] for a mixture of multiple particle species, this information 

must be input for every species, and the FBRM laser’s interaction with each species must be 

specifically modeled. Because the optical model developed by Kail et al. also explicitly modeled 

the internal optics of the FBRM probe, it may not be generalizable to FBRM hardware that differs 

from the hardware used in Kail’s experiments. The quantity of a priori information needed to 

accurately apply first-principles optical models to multi-particle systems limits their potential. As 

an alternative to rigorously calculating the elements of the CLH-PSD transformation matrix U, 

they can be measured from data to construct an empirical model. 

2.3.3 Empirical Approaches 

 The first-principles models described in Section 2.3.2 allow for accurate estimates of 

particle size for well-characterized particle systems. However, to accurately predict FBRM data, 

first-principles models require enough knowledge about the particle system being studied and 
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enough system-specific assumptions that they are difficult to generalize to multiple types of 

particles.[16, 34] Nuclear waste mixtures are too complex to feasibly apply these models, containing 

a wide range of particle sizes and materials;[3, 8] even waste simulants, designed to approximate 

the characteristics of nuclear waste with reduced complexity, contain multiple components that 

would be difficult to size accurately with FBRM.[20, 21] 

Given the practical constraints that limit first-principles calculation of U, empirically 

populating the linear model is an attractive alternative to first-principles approaches. Using an 

empirical approach allows the system’s light reflection characteristics to be treated as a black box 

via the incorporation of experimental data. Particularly for mixtures of several particle shapes, 

empirical modeling allows the complex interactions between particles to be modeled without 

exhaustive a priori system characterization. Empirical modeling still requires extensive data 

collection, but empirical models can be informed by basic experiments performed with just the 

FBRM equipment itself. It is for this reason that empirical modeling was chosen for the system 

examined in this thesis.  

Several empirical treatments for interpreting FBRM data have already been formulated by 

researchers. A common approach focuses on correlating the moments of the CLH with aspects of 

the particle size distribution measured through other means, essentially treating the CLH itself as 

a gray box and examining only the moments that change with practically useful quantities.[62] The 

first moment of the CLH has been previously correlated with average particle size,[52, 63] and CLH 

moments have been used to calculate kinetic parameters for pharmaceutical crystallizations;[38] 

however, correlations between CLH moments and PSD characteristics that are generalizable to 

multiple particulate systems have yet to be found.[64] 
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 Li et al. proposed an empirical framework using the same linear model structure described 

in Section 2.3.1., which effectively estimated the size of a population of paracetamol crystals.[31] 

This framework proposed using the same matrix transformation shown in Equation 2.1, but instead 

populating it with ‘fingerprint’ CLHs recorded experimentally for each PSD element xi.[31, 65] The 

columns of matrix U are populated with FBRM data representative of each size range, divided by 

the number of particles used in the measurement of the fingerprint: 

 1 2[ ... ]n
m

i

c u u u x
u
=

∈
  (2.5) 

for n bins in the particle size distribution. Equation 2.5 is the same as Equation 2.1, but it is 

expanded to show the individual columns of the matrix U. Here, ui is defined as a fingerprint for 

population i with abundance xi. In this way, the PSD of any FBRM data set is estimated as the 

linear combination of fingerprints that best approximates the data.  

In Equation 2.1, by choosing the vector x so that only one element is nonzero (i.e.  

( )0,...,0, ,0,...,0ix x=   ), the resulting CLH c from this particle size distribution is given by xiui . 

A column ui of U is equivalent to the CLH that the model predicts for its corresponding bin xi in 

the particle size distribution. Therefore, individual measurements taken from particles in each bin 

of x can be used to populate U in lieu of accurate parameters determined by first-principles. In fact, 

it is not necessary that x represents the abundance in monodisperse bins defined by size. The bins 

in x could be well-characterized distributions and might not be monodisperse. 

 This model was validated using paracetamol crystals in water and was able to accurately 

reconstruct CLHs measured experimentally from crystals between 20 and 500 µm in length.[31] 

The resolution of the PSD is limited by the obtainable samples of the target particles – because the 
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particles in each size bin of the PSD must have their CLHs independently recorded, it must be 

possible to obtain samples of those particles to measure with FBRM. For crystallizations, the PSD 

resolution will likely be limited by the mesh spacing in standard sieve trays; additionally, crystals 

that are difficult to accurately separate via sieving (such as needle-like crystals) will likewise be 

difficult to size using Li’s method. Despite this limitation, Li’s empirical approach yields results 

with shorter computational times than alternative sizing means such as in situ image analysis, and 

it requires less a priori knowledge of the particle system than first-principles FBRM models based 

on light scattering.[29, 30] 

 

2.4 Regressing PSD from CLH 

 Constructing the matrix U allows for the estimation of a particulate slurry’s CLH if its size 

distribution is known. However, the more practical application is working the problem in reverse, 

where a measured CLH is used to estimate the PSD of an unknown sample. To realize such an 

application, an inverse problem, or estimation problem, must be solved. This estimation is 

nontrivial because of the nonuniqueness of FBRM measurements (multiple PSD’s can map onto 

the same CLH). If the inverse solution Ux = c to Equation 2.1 is not unique, additional assumptions 

must be made to formulate a solution that is well-defined. Even with relatively simple geometric 

modeling such as the formulation described in the Section 2.3.2.1, the matrix U is generally ill-

conditioned for non-spherical particles.[66] When U is ill-conditioned, noise in the CLH 

measurement may create artifacts in the estimated PSD. These complications often preclude simple 

linear regression from being used to solve the inverse problem, as small deviations due to noise 

will have huge effects on the estimated PSD.  
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Many approaches to solving the inverse CLH-PSD problem add additional assumptions or 

constraints to simplify the problem. Worlitschek et al. used a method called projections onto 

convex sets, where the PSD vector x is projected onto all the sets associated with the chosen 

constraints (i.e. x ≥ 0) before being solved iteratively, to back out particle size from noisy FBRM 

measurements of ceramic spheres.[67] Adding a nonnegativity constraint to conventional least-

squares regression can suppress some oscillations in the solution, and it has been successfully 

applied to static mixtures of opaque particles[56] and to paracetamol crystallizations.[68] Where this 

constraint alone is insufficient, assumptions can be made about the shape of the PSD solution; for 

example, the PSD can be forced to conform to a certain smoothness constraint, in a process called 

regularization.[31, 57] If particles are being monitored in a flow environment, the particle orientation 

bias induced by the fluid flow can be used to constrain the PSD.[69] It has also been shown that 

principal component analysis (PCA) is capable of calculating the PSD from FBRM 

measurements.[66] PCA allows a solution to be computed without non-physical constraints (such 

as regularization, which leads to an incorrect solution if the PSD is not smooth).  

There are several promising approaches for converting chord length measurements into 

more practically useful information. The first-principles approach described by Kail et al. is 

capable, but the complexity of the simulant mixture used in this study necessitates an empirical 

approach. This thesis makes use of the empirical framework developed by Li et al. instead because 

it is simple to implement and has shown to be effective when applied to paracetamol crystals.[31] 

Additionally, Li’s model can be adapted to estimate composition instead of particle size 

distribution, which will be discussed more in the next chapter. 
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CHAPTER 3. Methods 

3.1 Equipment Setup 

 Our crystallization lab is equipped with an OptiMaxTM workstation made by Mettler-

Toledo, depicted in Figure 5. 

 

Figure 5 – OptiMaxTM system with attached probes 

The workstation contains a 1000 mL crystallizer and is capable of controlling temperature 

and agitation. The crystallizer includes customizable ports for various instruments, which in this 

case have been populated with an FBRM probe, an ATR-FTIR probe, and a removable baffle. 

ATR-FTIR is not used in these experiments, but along with the baffle, it influences the fluid flow 

G400 
FBRM 

ReactIR 
iC10 

Thermometer 

Stirrer 
Motor 

Removable 
Baffle 

Addition 
Port 



23 
 

in the system, and thus also the size and shape of any measured CLHs. Data from all instruments 

is gathered by Mettler-Toledo’s iControlTM software, where it can be further interfaced with 

MATLAB and Microsoft Excel. This interfacing feature can be used to estimate particle 

distribution in real time, using any of the models discussed in Chapter 2, and display this 

distribution on screen. iControlTM also records and saves all data from the OptiMaxTM in its own 

file format, a capability which was used extensively in this thesis. 

3.2 Solid-phase Monitoring 

A Mettler-Toledo G400 FBRM system records the CLH of the particles in the OptiMaxTM 

and communicates it to iControlTM, the crystallizer’s software suite. The G400 uses a laser 

wavelength of 750 nm and moves the laser at a speed of 2 m/s. Mettler-Toledo’s icFBRMTM 

software natively offers length-square weighting in addition to the unweighted chord length data.  

Weighting the CLD by the squared chord length of each bin is typically more useful for measuring 

large particles because it accentuates the counts from particles with large cross-sectional areas. 

Unweighted counts, on the other hand, depend more on the properties of small particles that have 

a high number density. Additional weighting of the distribution can be applied manually if desired 

(for example, past studies have examined volumetrically-weighted CLHs[22, 23]), but this capability 

is not used in this thesis. 

3.3 Six-component Waste Simulant 

This work employs a simulant for nuclear waste due to the logistical difficulties of 

transporting and handling radioactive material. Previous simulants were composed of glass beads, 

with added dense components to simulate concentration spikes.[70] The current simulant consists 
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of six components that, when mixed together in the ratios listed in Table 1, approximate the density 

and particle size distribution of the Hanford waste.[71] 

Table 1 – Department of Energy (DOE) waste simulant. Solids are mixed with deionized water to achieve a 
total solids content of 12 wt%. Multiplying this solid fraction by the percentages in the third row yields the final 
amounts in the fourth row. 

 SiC Tungsten Glass Al2O3 SiO2 Glass 
Size [µm] 1-10 10-19 45-90 210-400 297-841 841-1190 
Density 
[g/ml] 

3.2 9.6 2.5 3.9 2.65 2.5 

Solid 
Composition 
[wt%] 

52.0 4.0 38.0 3.5 1.0 1.5 

Composition 
with Water 
[wt%] 

6.24 0.48 4.56 0.42 0.12 0.18 

 

 All solids were packaged by and received directly from the National Energy Technology 

Laboratory (NETL). Both sizes of glass beads were supplied by Potters Industries LLC, the silicon 

carbide (size F1000) was procured from Industrial Supply Inc., the tungsten shavings were 

supplied by Buffalo Tungsten, the alumina was supplied by Kramer Industries Inc., and the silica 

particles (sand) were supplied by U.S. Silica.  

To form the waste simulant, these solids were mixed with deionized water to form a slurry 

with a total solids fraction of 12% by weight. We chose this concentration of solids because it was 

the upper limit used by NETL in their experiments.  We also performed additional experiments at 

low solids fractions to assess the lower limits of detectability – below a minimum number density, 

particles do not generate enough counts to be indistinguishable from noise. 

The simulant species are diverse particles, varying significantly in both density (ranging 

from 2.5 g/ml to 9.6 g/ml) and morphology. Figure 6 shows micrographs taken of each component, 

with scale bars to illustrate their sizes. 
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Figure 6 – Micrographs of the six simulant components. (A) Silicon carbide, (B) tungsten alloy, (C) 45-90 µm 
soda-lime glass beads, (D) alumina (Al2O2), (E) sand (SiO2), (F) 841-1190 µm soda-lime glass beads. 

 The micrographs in Figure 6 employ forward lighting, as they would appear dark and 

featureless under traditional back lighting. Both groupings of glass microspheres have similar 

properties, but backscatter light differently due to their sizes. The small spheres, with their 
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increased surface curvature, allow less light to pass directly through compared to their large 

counterparts – this optical behavior is visible on a macroscopic scale as well, where the small 

spheres appear to the naked eye as a white powder. Conversely, the large spheres appear to the 

naked eye as clearly translucent beads. Silicon carbide and tungsten are both small metallic 

particles with reflective surfaces. Alumina and silica are both large and appear crystal-like, but 

alumina is less consistently reflective than the other non-glass particles. The micrograph of 

alumina in Figure 6D shows that the majority of its surface reflects light in a specular manner, 

with dark brown patches that reflect light poorly in any direction (silica, by contrast, is consistently 

bright and diffusively reflective). 

3.4 Experimental Methods 

 To obtain the chord length fingerprints used in the empirical model, each of the six 

components were placed in water, agitated at 400 RPM, and monitored with FBRM. A constant 

volume of water, 500 mL, was used in each experiment to guarantee total immersion of the probe 

in the slurry. The FBRM G400 system offers two algorithms for calculating chords from the raw 

backscattering signal recorded by the probe – these are called the primary and macro modes, 

intended for emphasizing the signals from small and large particles, respectively. The component 

CLHs were recorded with the primary chord discrimination mode, which despite its intended 

purpose of emphasizing the contribution of small particles, produced the most counts from the 

large components relative to the small components. Histograms were recorded using a fifteen-

second measurement interval. Although individual measurements are taken every fifteen seconds, 

readings were averaged over longer time intervals to obtain smooth histograms that were 

representative of the components’ actual CLHs. For the three small components (silicon carbide, 

tungsten, and small glass spheres), fingerprints were taken at their concentrations in the complete 
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simulant, listed in the fourth row of Table 1. The three large components (alumina, silica, and 841-

1190 µm glass spheres) are too dilute in the simulant itself to produce smooth fingerprints, so their 

concentrations were increased to 2.91% by mass to provide more total counts, and thus a smoother 

overall CLH. This new concentration was roughly an order of magnitude greater than the large 

component concentrations used in the simulant, so it was necessary to later evaluate the chord 

count linearity up to this increased concentration. 

 The same experimental procedures used in recording the fingerprints were used to take 

validation data sets: measurements of component combinations used to test the model’s ability to 

estimate their composition. The stir speed and liquid volume were kept constant to prevent the 

relationship between chord counts and particle counts from changing.  

3.5 Computational Methods 

 Employing the empirical model to estimate composition from a measured CLH requires 

some form of regression. This work uses simple constrained least-squares regression, which can 

find a unique solution for this six-component system. Adding more components to the mixture 

would increase the complexity of the system and would increase the likelihood that the 

regression’s solution would be non-unique. This work uses only a non-negativity constraint to 

compute the composition estimate, and the effectiveness of this approach will be evaluated in the 

next chapter. 

 Estimation of the six component masses from the measured CLH is challenging because 

the large components produce significantly fewer chord counts per unit mass than the small 

components. Because their fingerprints are so small, it is easy for any regression algorithm to add 

them to the composition estimates in large amounts to affect a small increase in the goodness of 
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fit. To avoid overfitting, a parameter selection step was added to the model in order to choose the 

smallest possible number of fingerprints that can create a good approximation of the data. This 

step considers every possible combination of the six fingerprints and calculates the Akaike 

information criterion (AIC) for the model containing that subset of fingerprints. The formula for 

the AIC is 

 ( )ˆ2 2lnAIC F L= +   (3.1) 

where F is the number of fingerprints considered and ˆln( )L  is the optimized loglikelihood for the 

model and the given set of data. Equation 3.1 can also be written in terms of the mean squared 

error (sum squared error divided by the number of chord length bins). 

 ( )( )2 ln 2 1AIC F m MSEπ= − +    (3.2) 

The symbol F in Equation 3.2 is the same as the F used in Equation 3.1, MSE represents the mean 

squared error, and m is the number of bins in the chord length distribution. The fingerprint set with 

the lowest AIC has the best balance between model simplicity and goodness of fit, and is chosen 

for the final composition estimation. 

 To find the number of possible combinations of components, one must calculate the 

binomial coefficient for every value of F. The formula for the binomial coefficient is given by 

Equation 3.3. 

 !
!( )!

n n
F F n F

 
=  − 

  (3.3) 

For the six components in the simulant, calculating n choose F for every possible value of F yields 

63 combinations of components. MATLAB includes a function nchoosek() that automatically 
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calculates the binomial coefficient and prints the enumerated combinations to a matrix, which is 

used to select the components for each AIC calculation. 

 Previous work has shown that chord counts shorter than 30 µm vary more between 

experiments than counts in higher bin numbers.[31] They are more prone to noise and do not always 

increase linearly as particles are added to the system, making them less useful for quantitation. 

These counts may still contain valuable information, and so their adherence to the assumptions of 

the linear model is examined in Chapter 4 to make an informed decision with respect to the 

simulant used in this work. 
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CHAPTER 4. Results & Discussion 

4.1 Component Fingerprints 

 In order for FBRM to distinguish between two particle species, they must have distinctly 

shaped chord length histograms. The three smallest components in the Hanford simulant behave 

uniquely when observed with FBRM, although some share similar characteristics.  

 

 
Figure 7 – FBRM histograms for all six simulant components. The weight fractions of the three smallest 
components used to create these fingerprints are given in Table 1. The large components used 15 g of solid 
material in 500 mL of deionized water to produce more chord counts. (A) All components plotted on an axis 
automatically sized for SiC, showing the disparity in total counts between SiC and the other components. (B) 
Component histograms, zoomed in to show the shapes of tungsten and small glass spheres. (C) Component 
histograms, zoomed in to show the shapes of the three largest components. (D) Component histograms plotted 
on a logarithmic y-axis. 

(A) (B) 

(C) (D) 
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 Figure 7 shows the components’ chord length histograms plotted together, at various levels 

of zoom. The three plots in this figure show the different shapes and sizes of the CLH for these 

simulant components. Figure 7A illustrates the peak height difference between the SiC CLH and 

the other five components. This difference was expected, as it is the dominant component in terms 

of both weight percent and number density. However, the difference in counts was so significant 

that the other components were difficult to detect while SiC was present. 

Figure 7B, zoomed to show the CLH shapes of the other components more effectively, 

shows a similar count difference between the three smallest components (SiC, tungsten, and small 

glass beads) and the three largest (Al2O3, SiO2, and large glass beads). Figure 7B also illustrates a 

fundamental property of FBRM: the tendency of the CLH to overestimate the sizes of small 

particles and underestimate the sizes of large particles.[29, 30] Both tungsten and the small glass 

beads showed a peak corresponding to a chord length that was significantly larger than its actual 

size range; tungsten in particular displayed this property, with the majority of the counts in its CLH 

distributed beyond the maximum particle size of 20 µm. Previous research has asserted that this 

oversizing occurs because the beam of the laser expands beyond its focal point.[29, 30, 33, 52] If the 

laser contacts a particle that is smaller than the beam width, it will yield a backscattered light pulse 

that is closer to the width of the laser beam than it is to the width of the particle. This effect is 

compounded by a high number density of small particles, which increases the likelihood that the 

laser will encounter another particle before the previously examined particle leaves the beam.[34] 

Figure 7C shows the CLH shapes from the three components with the largest radii and 

supports the conclusions drawn from the micrographs in Figure 6. Alumina generated fewer chord 

counts than silica despite having a higher number density (calculated using its average size and 

material density), possibly due to its smooth surface. Alumina likely generates so few counts per 
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particle because large portions of its surface are smooth and glassy, which would cause the FBRM 

laser to to scatter away from the detector if it is not perpendicular to the particle surface.[59] The 

large glass beads, having the lowest number density of all components and the least-ideal reflection 

characteristics, generated the fewest counts and are difficult to detect at all – Figure 7D shows that 

the large glass bead histogram is consistently lower than the next smallest histogram by almost a 

factor of 10. All three largest components shared a peak near 3 µm; while their histograms above 

this peak appear distinctly shaped, the similarity of their CLHs may make them difficult to 

distinguish from each other with FBRM. Additionally, with a chord count mode less than 10, it is 

difficult to distinguish their signal conclusively from the noise level of the instrument. Typically, 

square-weighting the CLH emphasizes the chord counts generated by large particles – the square-

weighted component histograms are plotted in Figure 8. 

 
Figure 8 – Square-weighted chord length histograms for all components. Histograms were recorded with the 
same material amounts as Figure 7. Note that the y-axis is not listed in units of µm2, as would be expected for 
length-square weighting. Mettler-Toledo’s software rescales the y-axis so that the numbers are smaller and 
more representative of the expected counts of large particles. (A) All histograms plotted on axes that are 
automatically scaled for SiC. (B) The y-axis is reduced to show the shapes of the Al2O3, SiO2, and large glass 
bead histograms. 

Figure 8 shows that square-weighting the FBRM data emphasizes the histograms of the 

small particles instead of the large particles. This is because despite their large average sizes, the 
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largest components produce chord counts that are significantly smaller than their actual particle 

sizes; the inverse is true for the smallest components. Additionally, the shapes of the large 

component histograms become less distinct. These factors make unweighted histograms more 

quantitatively useful for this system. 

To compute the FBRM fingerprints of the simulant components, the histograms in Figure 

7 were divided by masses of material used to make each histogram. The fingerprints are plotted in 

Figure 9. In Figure 9B, the vertical scale is adjusted to view the histogram shapes from the three 

largest components. 

  
Figure 9 – Fingerprints of the six simulant components. (A) Plots of all six fingerprints, with y-axis scaled to fit 
the entire SiC histogram. (B) Same curves as Figure 9A, but with the y-axis adjusted to show the scale of the 
three largest components. 

 Figure 9 shows that SiC still generates the largest histogram in terms of counts per 

component mass, but its peak height is closer to the peak heights of tungsten and the small glass 

beads. Contrasting with Figure 7, the tungsten histogram in Figure 9 now has a higher peak than 

the small glass bead histogram, indicating that tungsten generates more counts on a per-mass basis. 

The histograms of the three components with the smallest radii still have higher peaks than the 

histograms of the three largest components, and the large component peak heights do not change 

their relative heights because all three fingerprints were recorded with the same masses (15 g of 
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each component). To see the difference in specific counts between the large particles, it is useful 

to plot the component histograms in terms of counts per particle. These normalized histograms are 

shown in Figure 10 (particle number was computed by assuming a spherical particle geometry, 

with average diameter equal to the geometric mean of the particle size range listed in Table 1). 

 
Figure 10 – Chord length histograms of all six components, normalized by the number of particles used to 
record each data set.  

The CLHs in Figure 10 follow the opposite progression from those in Figure 7. Here, the 

large glass beads produce the most chord counts per particle by a large margin. Additionally, the 

difference between alumina and silica becomes more pronounced, as fewer silica particles per unit 

mass than there are in alumina. The three smallest components all produce significantly fewer 

counts per particle than the three largest components – this result is consistent with other data seen 

in literature, as any given large particle has a higher probability of passing in front of the FBRM 

laser than a small particle due to its higher cross-sectional area.[34] 

Using a linear model to estimate composition with FBRM requires that the particle system 

being observed conform to the assumptions outlined in Section 2.3.1. For the linear model shown 

in Equation 2.1 to predict the composition of an arbitrary mixture of these six simulant 
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components, the individual fingerprints must behave linearly with respect to the total particle 

count. On the other hand, prior research has shown that chord count increases linearly with 

increasing slurry density instead of particle count.[25, 52] (Slurry density is defined as the mass of 

solids divided by the volume of the mixture). Figure 3, which was shown earlier to document the 

increase in chord count nonlinearity with increasing particle size, plotted total counts against solid 

fraction to illustrate this behavior. However, including the relationship between chord counts and 

slurry density in the PSD-CLH model would introduce nonlinearity because, as particles are added 

to the observed system, the total volume of the system increases. Instead of a simple c = Ux 

formulation, the model could take the form  

 
m n

xc U
V x

U

ρ
×

 
=  + 
∈



 

  (4.1) 

where ρ is the density of the solid particles, V is the liquid volume, and U  is a modified version 

of the transformation matrix U that is scaled to slurry density instead of solid mass. While this 

relationship could be more predictive than a linear model, using it over a simple linear relationship 

between chord counts and particle counts is unnecessary. For every solid species, there should 

exist a dilute region where the simple linear relationship is valid, in which each particle contributes 

independently to the measured CLH. Equations 4.2 and 4.3 apply when x is small: 

 x x
V x Vρ
 

≈ + 
  (4.2) 

 x x
V
∝   (4.3) 
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The linear model used in this thesis can only be applied accurately in this dilute region, and finding 

this region for each simulant component was required before performing any composition 

estimation.  

 Testing the linearity of the CLH fingerprints of the six components was necessary prior to 

the model’s implementation. To perform a linearity test, each component was added to pure 

deionized water incrementally, and the chord counts were recorded after each addition. The final 

amount present at the end of an experiment was greater than or equal to the amount used when the 

fingerprint was recorded; this way, the system’s linearity could be tested for all compositions less 

than or equal to the maximum concentration used in the tests at NETL. The results from these 

experiments are shown in Figure 11, where the x-axis shows the mass of the component that has 

been added to 500 mL of deionized water. All histograms in Figure 11 were averaged over a period 

of at least 10 min to mitigate noise.  

A linear regression was applied to the data for each component to find the expected chord 

count increase when the components are added to water – slopes alone were fit to the data, forcing 

the lines through the origin. Performing the regression in this way was necessary because zero 

counts must equate to zero observed particles. If every component’s regression includes an 

intercept, then the model would be unable to predict an observation of zero counts. While the 

FBRM probe often records zero counts when monitoring pure water, there is a small amount of 

measurement noise. This noise was averaged over five minutes and included in the data sets shown 

in Figure 11. Averaging mitigated the noise as much as possible, but the average CLH of the noise 

was not subtracted from the background. Table 2 records the slopes of the linear regressions fitting 

component mass to total counts, reported in terms of total counts per gram of material, along with 

95% confidence intervals on the slopes.  
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Table 2 – Slopes of the linear regressions shown in Figure 11. The slope for silicon carbide is reported twice: 
first for the regression including all data, and second for the regression through only the region where its mass 
and counts appear to vary linearly (between 0 and 0.2 g). Each slope is presented with its corresponding 95% 
confidence interval. 

Single-Component [counts/g] 
SiC 5430 ± 310 
SiC (linear region) 215000 ± 2000 
Tungsten 573 ± 9 
Small glass beads 243 ± 2 
Al2O3 5.56 ± 0.15 
SiO2 8.60 ± 0.31 
Large glass beads 1.08 ± 0.02 

 

Figure 11 shows chord counts plotted against the mass of each component measured 

separately. It can be seen that most components’ behavior is at least roughly linear. Tungsten and 

both size ranges of glass beads show strong linearity in their fingerprints, while Al2O3 and SiO2 

show slight nonlinear behavior. The CLHs of the three largest components were recorded with up 

to 15 g of material in 500 mL deionized water, which is a significantly higher concentration of 

these components than exists in the simulant. This high concentration was used to amplify the 

signal produced by the three large components; in their simulant concentrations, these components 

produce few chord counts and are affected more heavily by noise than the rest of the simulant. 

Figure 12 shows the CLH for selected solid amounts in the linearity plots from Figure 11. 
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Figure 11 – Results from linearity tests of each simulant component. The blue points are experimental data, 
and the dotted red line represents a linear regression to the data. All components but silicon carbide are roughly 
linear. Linearity is assessed in terms of solid mass. The error bars represent the standard deviation of the chord 
counts across the 10 minutes of averaging. They were calculated using repeated observations of the same system 
at intervals of 15 s, making them representative of the measurement noise. 

(SiC) (W) 

(GSm) (Al2O3) 

(SiO2) (GLg) 
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Figure 12 – Chord length histograms from the experiments shown in Figure 9. A fixed mass of each simulant 
component is added to 500 mL of water at regular time intervals. Each histogram shown in this figure has been 
averaged over five minutes. 

 

(SiC) (W) 

(GSm) (Al2O3) 

(SiO2) (GLg) 
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Figure 13 – Total counts for each simulant component, plotted against slurry density to examine linearity. The 
blue points are experimental data, and the dotted red line represents a linear regression to the data. The error 
bars represent the standard deviation of the chord counts across the time interval of averaging.  

 

(SiC) (W) 

(GSm) (Al2O3) 

(SiO2) (GLg) 
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To check if the approximation denoted by Equation 4.3 is valid (that total solid mass is 

proportional to slurry density), the chord counts are plotted against slurry density in Figure 13. 

The curves in Figure 13 are similar to the curves in Figure 11. Tungsten and both size ranges of 

glass beads behave linearly, and some nonlinearity is observed in the plots of alumina and silica. 

Figure 12 shows that the shapes of the component CLHs are consistent at each addition of material, 

despite any nonlinearities in total chord counts. Silicon carbide is the only component that does 

not behave even approximately linearly, in both Figures 11 and 13.  

 

Figure 14 – Silicon carbide total counts at small solid fractions. The blue points are experimental data, and the 
dashed line is a linear regression through the first three points, to show that a linear chord count region does 
exist. The total counts at 1 g are on the same order of magnitude as the counts at 10 g in Figure 11. The error 
bars are the same as those in Figure 11, where they represent the chord count standard deviations across the 
averaging intervals. 

Because the chord count pattern of silicon carbide looks similar to the saturation seen in 

Figure 2, SiC’s linearity was probed further at low masses to find a region where chords and 

particles varied linearly. The results of this experiment are shown in Figure 14, which once again 

plots total counts against the added mass of solids. This figure shows that while the linearity holds 

at low concentrations, the linear relationship begins to break down above 0.2 g of the component 
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mass, and the chord count increase from each addition of material diminishes. This behavior is not 

unique to silicon carbide. Comparing the trend in Figure 14 to Figure 3, which shows that sieved 

calcite behaves similarly to silicon carbide at higher solid fractions, the only difference between 

the two types of particles is the concentration at which the linear relationship breaks down. 

 Along with chord count linearity, the model used in this work also assumes that the 

component fingerprints are additive. This model assumption had to be tested for the Hanford 

simulant as well. To find component pairs that violated this assumption, the simulant was 

assembled one component at a time, starting with the largest and working down to the smallest 

component. The simulant was assembled according to its composition in Table 1. At each 

component addition, the CLH fingerprints were first multiplied by the component masses, then 

added together, comparing the resulting histogram to the measured CLH of the mixture to see if 

the fingerprints correctly reproduced its data.  
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Figure 15 – Linear combinations of the six component fingerprints, plotted alongside FBRM data taken from 
the component combinations  mixed in 500 mL water. The solid curve is the recorded data, and the dashed 
curve is the model predicted CLH. (A) 0.7 g of SiO2 and 1 g of large glass beads. (B) 2.4 g of Al2O3 and the two 
components from 15A. (C) 25.6 g of small glass beads added to the components from 15B. (D) 2.7 g of Tungsten 
shavings and the four components from 15C. (E) 0.1 g of SiC added to the components from 15D, completing 
the simulant. (F) Zoom of Figure 15B to show histogram above 30 µm. 

(A) (B) 

(C) 

(E) 

(D) 

(F) 
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 Figure 15 shows the CLH as each component was added, starting with the mixture of SiO2 

and large glass beads, alongside the model’s prediction of the CLH. This figure shows nonlinear 

behavior at each component addition via the difference between the predicted CLH and the 

observed data, with the most substantial changes in CLH shape occurring when the three smallest 

components are added. Figure 15A and Figure 15B show CLHs before and after the addition of 

Al2O3 to the slurry of SiO2. It can be seen that the model correctly predicted the shape of the CLH 

when the largest components (Al2O3, SiO2, and large glass beads) were added; however, the 

magnitude of the peak at 3 µm was consistently underestimated at each step. Figure 15F plots the 

same data as Figure 15B, but with the axes zoomed in to show only the chords longer than 30 µm. 

This zoomed figure shows that, despite the higher-than-expected number of counts below 30 µm, 

the model correctly predicts the data for chord bins larger than 30 µm. Because the linear model 

shows considerably better accuracy when the counts below 30 µm are excluded, it may be desirable 

to exclude those counts from the model entirely; however, doing so would effectively exclude the 

majority of the data created by the three largest particles. The impact of these short chord counts 

on the components’ linearity is examined more detail in Section 4.2.  

Concerning the three small (SiC, tungsten, and small glass beads) components, Figures 

15C through 15E all show that as they are added to the total mixture, the resultant CLH differs 

from the model’s prediction in both shape and total counts, with the deviations from the predicted 

chord counts no longer being confined to purely the chord counts below 30 µm. These results 

necessitated examining the pairings of the small components in more detail. The additivity of 

component pairs was evaluated by gradually adding one component to a slurry that contained a 

constant amount of another component, then subsequently comparing the chord count linearity of 

this experiment with the linearity results of the gradually-added component in isolation. The 
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reverse experiment was also performed, where the component that was previously present at a 

constant amount was added gradually to a fixed quantity of the other component. If the slope of 

either component’s chord count increase was unchanged while another component was present in 

the system, the two were considered to be additive, the ideal case.  

 The pairing of small glass beads and tungsten particles was found to conform partially to 

the assumptions of the linear model. Figure 16 compares the counts-vs-mass curves of both 

components in isolation and in each other’s presence, showing a linear regression through both 

sets of points to illustrate the slope of each curve. The regressions through the component mixture 

data have been fit with y-intercepts to account for the initial counts generated by the first-added 

component, and the regressions through the pure component data are the same as those calculated 

from the data in Figure 11. Table 3 gives the numerical values of the two-component slopes and 

their corresponding 95% confidence intervals, alongside the single-component data from Table 2 

for comparison. 

 

Figure 16 – Additivity results for small glass spheres and tungsten shavings. (A) Total counts versus mass, for 
glass in the presence of 3.3 g tungsten (blue curve) and in pure water (red curve). (B) Total counts versus mass, 
for tungsten in the presence of 27 g glass (blue curve) and in pure water (red curve). The error bars represent 
the chord count standard deviations across the averaging intervals. 

 

(A) (B) 
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Table 3 - Slopes of the linear regressions for various additivity experiments, compared to their chord count 
slopes in single-component mixtures. Like in Table 2, 95% confidence intervals are tabulated as well. Values 
for tungsten, small glass beads, and the linear region of SiC counts are colored to show comparison. 

Single-Component [counts/g] Two-Component [counts/g] 
SiC 5430 ± 310 SiC in tungsten (linear) 205000 ± 6000 
SiC (linear region) 215000 ± 2000   
Tungsten 573 ± 9 Tungsten in SiC 516 ± 28 
  Tungsten in sm. glass 1190 ± 100 
Small glass beads 243 ± 2 Sm. glass in tungsten 241 ± 10 
Al2O3 5.56 ± 0.15   
SiO2 8.60 ± 0.31   
Large glass beads 1.08 ± 0.02   

 

 Figure 16A shows that the pair of linear regressions have slopes that are not significantly 

different. This indicates that the two components, tungsten and small glass, are additive in this 

experiment, where the small glass beads are added to a fixed mass of tungsten.  The slopes with 

and without the presence of tungsten are 241 and 243 counts/g, respectively. The only major 

difference between the two data sets is the increased noise in the two-component mixture – 

combining glass and tungsten creates a higher relative error at each composition, as shown by the 

error bars in Figure 16A.  

On the other hand, the results in Figure 16A are not recreated when tungsten is added to a 

fixed mass of glass beads. Figure 16B, which depicts this experiment and compares it to tungsten 

in pure water, shows different slopes (1190 and 573 counts/g respectively) between both 

regressions, and the difference is large enough to be statistically significant (calculated with an F-

test, using a significance value of 0.05). Despite the difference in slope, the count increase is still 

linear. 

It is important to note that the total chord counts for 27 g of glass beads from Figure 16A 

are different from counts for the same sample in Figure 16B. The histograms for these two data 

points are plotted in Figure 17. 
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Figure 17 – Chord length histograms recorded for samples of 27 g of small glass beads in 500 mL water, 
measured on two different days. Blue curve is from the measurement used for Figure 16A, red curve is from 
the measurement used for Figure 16B. 

 The histograms in Figure 17 are offset from one another by a significant amount – their 

total counts differ by almost a factor of 2. Figure 17 shows the day-to-day variability that can be 

inherent to FBRM. This variability inhibits quantitative use of FBRM, and it sets a limit on the 

maximum accuracy that can be achieved for the simulant composition estimates that will be 

discussed in Section 4.3. 

 Figure 18 shows the results of the same experimental protocol in Figure 16 applied to a 

binary mixture of SiC and tungsten. Figure 18A compares the chord counts of SiC with and without 

the presence of tungsten. Due to the nonlinearity of SiC at its specified concentration in the NETL 

simulant, tungsten was added to the SiC slurry, where the SiC density is between 0 and 0.2 g per 

500 mL of water (a number density of 9.4 × 108 particles/L). This range is where SiC’s chord count 

varies linearly with its particle count , as can be found in  Figure 11. Like before, the numerical 

values of the slopes in Figure 18 are reported in Table 3. 

      16a 

      16b 
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Figure 18 – Additivity results for SiC and tungsten shavings. (A) Total counts versus mass, for tungsten in the 
presence of 0.1 g SiC (blue curve) and in isolation (red curve). (B) Total counts versus mass, for SiC in the 
presence of 3.3 g tungsten (blue curve) and in isolation (red curve) – the linear regressions are made using only 
data between 0 and 0.2 g of SiC.  

 It can be seen in Figure 18A that the two slopes are nearly equivalent. Comparing the values 

in Table 3, the slope of the mixture (SiC + W) is slightly lower than the slope of pure tungsten. 

While these two slopes are statistically different, they differ from each other by only 10%. This 

observation indicates that for this component pair, the results of the additivity experiment are 

different the results in Figure 16 – for these two components, tungsten behaves mostly as expected 

when measured in the multicomponent mixture. Furthermore, when silicon carbide is added to a 

tungsten slurry (Fig. 18B), it produces a visibly similar chord count increase to pure silicon carbide 

– these two slopes are not statistically different with a significance value of 0.05.  

4.2 Chord Length Error Analysis 

Previous work by Li et al.[31, 64, 65] excluded counts from size bins smaller than 30 µm due 

to high noise and a less robust dependence on the actual number of particles. To evaluate the 

noisiness of counts below 30 µm for the waste simulant used in this work, the standard deviation 

of the total chord counts was calculated for each component. Each standard deviation was 

calculated using 10 minutes of recorded CLHs, yielding 40 total measurements for each 

(A) (B) 
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component. The standard deviations were divided by the average chord counts to represent the 

relative error. The results of these calculations are shown in Table 4, which shows this relative 

standard deviation for chords both above and below 30 µm. 

Table 4 – Standard deviation of total counts measurement, as a percent of the total counts. Deviations were 
calculated for chord counts both below and above 30 µm.  

 SiC W Sm Glass Al2O3 SiO2 Lg Glass 
1-30 µm 7.84% 9.02% 2.68% 29.5% 25.8% 21.2% 
30-1000 µm 7.69% 8.84% 2.54% 15.8% 15.0% 21.9% 

 

 In Table 4, it is immediately apparent that two components, Al2O3 and SiO2, see a 

significant reduction in relative error for chords longer than 30 µm, while the other components 

see little to no change with these chords removed. These two components are similar in size and 

share a similar surface character, so it is not surprising that they should behave similarly to each 

other under FBRM monitoring. However, this reduced error was not seen for the other type of 

large particle, the 841-1190 µm glass beads. All three of these components have a large CLH peak 

centered at 3 µm, which was seen previously in Figure 7. This peak is thought to exist because of 

chord splitting, a phenomena discussed in the background section where interruptions in the 

backscattering along a large particle cause it to generate multiple short chords instead of a single 

long chord. The results in Table 4 indicate that the glass beads likely experience chord splitting in 

a more consistent manner than Al2O3 and SiO2, as glass beads do not feature significantly different 

levels of error between the chord splitting peak and the rest of the histogram. When a transparent 

glass bead is scanned by the probe’s laser, it will produce bright spots that are uniform regardless 

of its rotation, and any one particle backscatters light in a similar pattern to its neighbors due to 

the spherical shape of glass beads in a population. Al2O3 and SiO2, by contrast, are not uniformly 

shaped and may present distinct faces to the probe when rotated. While the effect of rotation would 
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be expected to average out over a large number of particles, the number of sampled particles is 

very small in the waste simulant. 

 Having determined that excluding chords shorter than 30 µm reduces noise for Al2O3 and 

SiO2, it was next necessary to test whether or not those chords behaved more nonlinearly than the 

larger chords. This was tested with the data sets used in Figure 8, which consisted of CLHs 

measured at different concentrations of each component. By isolating the total chord counts above 

and below 30 µm, then applying a linear regression to each set of chord counts, it was possible to 

calculate the goodness of fit for each set of chords. The R2 values from each regression are 

presented in Table 5.  

Table 5 – R2 coefficients for the linear regression between chord counts and solid mass. These coefficients were 
calculated for counts above and below 30 µm; SiC considered only the linear region at small mass fractions 
shown in Figure 7.  

 SiC W Sm Glass Al2O3 SiO2 Lg Glass 
1-30 µm 0.996 0.981 0.992 0.758 0.712 0.893 
30-1000 µm 0.999 0.979 0.985 0.906 0.801 -0.392 
1-1000 µm 0.997 0.965 0.981 0.789 0.717 0.900 

 

 Table 5 shows similar results to Table 4, in that most components showed no significant 

difference in linearity between chords above and below 30 µm, and that Al2O3 and SiO2 were the 

only components to show improvement with the short chords removed. However, the large glass 

beads behaved less linearly with the short chords removed, an unexpected result given the minimal 

difference in standard deviation between long and short chords for this component. This nonlinear 

behavior likely occurs because the bulk of this component’s CLH is smaller than 30 µm – because 

the large glass spheres are smooth and transparent, it is highly unlikely that the FBRM laser is  

able to measure their full diameter. Because all spherical beads cause chord splitting in a similar 

manner, the chord counts below 30 µm still vary linearly with the particle count. 
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 Tables 4 and 5 show that for Al2O3 and SiO2, there could be an increase in model accuracy 

if the counts below 30 µm are excluded from the fit – the long chords show a smaller standard 

deviation and a greater R2 value than the short chords for both components. All other components 

show little to no improvement between these chord sizes, and slurries including the large glass 

beads will see an accuracy decrease. Because two large components could be positively affected, 

and the large glass beads are difficult to detect in the presence of any other components to begin 

with, it may beneficial to exclude these counts from the model when measuring most component 

combinations. However, excluding these count from the fit would remove almost half of the bins 

in the CLH, so versions of the model with and without these bins were tested on real data and 

compared. 

4.3 Model Accuracy 

 Testing the model assumptions provided necessary context for application of the model to 

real data. The model was used to estimate the composition of component pairs and mixtures before 

applying it to data from the full simulant. This section documents the model’s estimates when 

applied to these data sets.  

 We use the same data shown in Figure 16 to test the model, where tungsten and small glass 

beads were mixed together in 500 mL of deionized water. At every tested composition, data was 

recorded over a period of time so that when averaged, it would provide a consistent measurement. 

For this system, the CLH was averaged over a period of 5 minutes. This shorter averaging time 

was possible for this system due to the high total chord counts — systems with lower total counts 

necessitate longer observation periods to reduce the noise level.  
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Figure 19 shows the results from the model’s application to data, recorded according to the 

procedure outlined above, from a mixture of 3.3 g of tungsten and 27 g of small glass beads in 

suspension. Figures 19A, 19C, and 19E respectively plot the unmodified linear empirical model’s 

estimate, the model’s estimate using the AIC-based component selection step, and the model’s 

estimate both using the component selection step and excluding chord counts smaller than 30 µm. 

Each estimate is shown alongside a plot containing three CLHs, which represent in order: the CLH 

measured from the mixture of 3.3 g of tungsten and 27 g of small glass beads, the linear fit of the 

dataset using the component fingerprints, and the model’s prediction of what the CLH should look 

like (created by linearly combining the component fingerprints, weighted by the component 

amounts). 
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Figure 19 – Composition estimates from the model for a mixture of 3.3 g tungsten and 27 g of small glass beads. 
(A) Composition estimate made by the unmodified linear model. The blue bars indicate the slurry’s true 
composition, and the yellow bars indicate the model’s estimate. (B) Plot of the actual measured CLH, the best-
fit CLH using the linear model, and the linear model’s prediction of what the ideal CLH should look like. (C) 
Composition estimate using the AIC component selection step. (D) CLH plot for 19C. (E) Composition estimate 
using the AIC component selection step and excluding counts below 30 µm. (F) CLH plot for 19E. 

(A) (B) 

(C) 

(E) 

(D) 

(F) 
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 Figure 19E shows the most accurate estimate, in which the component masses are accurate 

to within 10% of their actual values. The model used to make the estimates in Figure 19E 

incorporated the component selection step and excluded counts below 30 µm.  

Comparing Figures 19A and 19C shows that without the component selection step 

described in Section 3.5, the model estimates 80 g of alumina that is not present in the mixture, 

while the two components that are actually present remain mostly unchanged by this model 

modification. Using the lowest AIC to select the optimal number of components was adequate to 

properly balance goodness of fit with model simplicity, for the two-component system used in 

Figure 19. The red dashed curves in Figures 19B and 19D, which represent the model’s least-

squares fit of the data, are almost identical; this similarity shows that the addition of alumina is 

insensitive to the CLH.  

Excluding the short counts visibly improved the estimation accuracy. Both Figures 19C 

and 19E show that the lowest AIC model selects the correct two components regardless of the 

count exclusion, but the quantities of both are closer to their actual values with these counts 

excluded. This is a surprising result, as the analysis in the previous section showed that excluding 

the small counts does not lower the count variance for the two small components considered here. 

Here, Figures 19C and 19E show that excluding counts shorter than 30 µm positively affects this 

two-component system. Despite this result, there is also significant information content lost, 

comparing the CLH in Figures 19D and 19F. 

 As mentioned previously, the model can operate on noisy data sets collected in real time 

and return composition estimates accurate to within FBRM’s inherent level of error. Figure 20 

shows the model’s estimates at each time point along an entire experiment. The estimated 

composition corresponded closely to the actual experimental procedure. First 3.3 g of tungsten was 
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added to pure water, the same amount examined in Figures 16 and 18. The CLD was measured for 

5 minutes, at which point 9 g of glass spheres were added to the mixture. This addition was 

repeated two more times, at 5 minute increments.  

 
Figure 20 – Real-time composition estimate for the experiment performed in Figure 16A and Figure 19. The 
solid lines indicate the model-predicted composition, and the dashed lines represent the actual composition. 
The AIC component-selection step is used in this model, and the model considers all chord counts between 1 
and 1000 µm. 

The model accurately estimated the tungsten concentration throughout the entire experiment, and 

while it underestimated the amount of glass added at each step, it registered equal additions of the 

components at the appropriate times, suggesting linearity. There was a small time lag for the 

composition estimate to reach a steady state after each addition, owing to the time it takes for the 

slurry to become completely mixed. Once this steady state was reached, the estimate remained 

steady until more material was added to the system.  

The estimation accuracy attained in Figure 20 does not hold for all mixtures. Considering 

the potentially nonadditive behavior of small glass beads and tungsten shavings illustrated by 

Figure 16 and Table 3, the composition of the slurry in Figure 20 can still be tracked 

approximately. The amounts of each component are underestimated at each step because mixing 
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these components together does not always produce the same chord count increase as the 

components do individually. However, applying the model to the experimental profile from Figure 

16B, which uses the same two components, does not yield the same level of success.  

 
Figure 21 - Real-time composition estimate for the experiment performed in Figure 16B. The solid lines indicate 
the model-predicted composition, and the dashed lines represent the actual composition. The AIC component-
selection step is used in this model, and the model considers all chord counts between 1 and 1000 µm. 

 Figure 21 shows a real-time composition estimate for the experiment performed in Figure 

16B, where a fixed mass of glass beads was added initially, followed by successive additions of 

tungsten. In this case, the model was incapable of distinguishing the tungsten additions from more 

glass beads. Only at 2000 seconds, when the third mass of tungsten was added to the mixture, did 

the model converge to an estimate more representative of the actual composition. 

 While the two-component mixture of small glass spheres and tungsten shavings allowed 

for composition estimation using the linear model, the mixture of silicon carbide and tungsten 

could not be estimated with the same level of accuracy. Figure 22 shows the model’s best 

composition estimate for a mixture of these two components.  
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Figure 22 – Composition estimates for a mixture of 0.1 g SiC and 3.3 g tungsten shavings. (A) Composition 
estimate using the AIC component selection step. (B) Same data as Figure 22A, but with the y-axis zoomed to 
show mass estimates other than large glass beads. (C) Composition estimate using the AIC component selection 
step, excluding counts shorter than 30 µm. (D) Same data as Figure 22C, with the y-axis zoomed to show mass 
estimates other than large glass beads. (E) CLH plot for Figure 22A. (F) CLH plot for Figure 22C. 

(A) (B) 

(C) (D) 

(E) (F) 
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 The AIC is employed to calculate the optimal number of components in all estimates, and 

results are shown both including and excluding counts shorter than 30 µm. CLH plots of the type 

used in Figure 19 are also shown.  

The actual amount of material present upon recording this data set was 0.1 g of SiC and 

3.3 g of tungsten. The model did correctly recognize the presence of these two components, but it 

added substantial amounts of both sizes of glass beads to its estimate. The large glass beads in 

particular were predicted to be present at a mass that is orders of magnitude greater than any other 

component, both including and excluding the short chord counts. Additionally, Figures 22B and 

22C show that both quantities of the components that were actually present were overestimated by 

about 20%. 

 The linear model’s failure to capture the behavior of this system was unexpected, given the 

additivity of silicon carbide and tungsten at low SiC concentrations. Figures 22E and 22F show a 

distinct difference between the model’s predicted CLH and the actual data. In order to compensate 

for this difference, the model added excess amounts of both SiC and tungsten. The model also 

added the fingerprint from the large glass beads to the fit, which explains the noisiness of the 

dashed red curves in both CLH plots (Figures 22E and F). Due to the large glass beads producing 

few counts per gram of material, they were estimated in high numbers even though they 

contributed relatively few total counts to the fit. Figure 22F shows that when the short counts were 

excluded, the data set did not contain enough detail to allow for a unique solution, so the model 

was unable to estimate the present amounts of either SiC or tungsten. 

 In summary, the model’s applicability to the three small components in the simulant was 

mixed – it predicted combinations of tungsten and glass beads with moderate accuracy, but 

mixtures including SiC were difficult to analyze with a linear model. The three large components 
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(alumina, silica, and large glass beads) produced fewer total counts than the small components, so 

they were examined separately before examining the simulant that contains six components.  

 

 
Figure 23 – Composition estimates for slurry containing 2.4 g alumina, 0.7 g silica, and 1 g of large glass beads. 
(A) Model estimate compared to actual composition, using the full range of chord lengths. (B) CLH plot showing 
the FBRM data for the mixture, the model’s best-fit CLH, and the model’s prediction of what the CLH should 
be. (C) Model estimate of composition, using only counts longer than 30 µm. (D) Same curves as Figure 23B, 
but using counts longer than 30 µm. 

 Figure 23 shows the model’s best concentration estimates for a slurry of 2.4 g of alumina, 

0.7 g of silica, and 1 g of large glass beads. Composition estimates both including (Figure 23A and 

B) and excluding (Figure 23C and D) counts below 30 µm are compared. Figure 23A compares 

the model estimate and actual composition, which illustrates a significant overestimation of both 

silica and the large glass spheres, while the 2.4 g of alumina in the slurry is not seen at all. Figure 

(A) (B) 

(C) (D) 
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23B compares the CLH and the fitted model. The three CLHs plotted in this figure show that this 

overestimation occurs due to a difference in the peak magnitude at 3 µm. The model predicted that 

this peak should be substantially lower, and thus it increased the concentrations of the components 

whose fingerprints most prominently feature that peak.  

In Figure 23C, the same comparison of the model estimate and actual composition is 

shown, where chord counts smaller than 30 µm are eliminated. As shown earlier, chord counts 

shorter than 30 µm are more variant than counts larger than 30 µm for both alumina and silica. A 

reduction is seen in concentrations that were previously overestimated. However, excluding the 

small counts changed the component that has been left out of the estimation – previously, alumina 

was not detected by the model, and with the modified model, silica shows an estimated 

concentration of zero.  

Figure 23D shows plots for the fitted and measured CLDs. It can be seen that despite the 

absence of silica, the predicted CLH and the observed data match closely, while the only major 

difference is found between 30 and 100 µm. This means that silica likely generates the majority of 

its counts below 30 µm – the silica histogram in Figure 8 supports this conclusion. If silica does 

generate a substantial number of counts above 30 µm, then the model’s predicted CLH would 

deviate further from the observed data than it does in Figure 23D. Additionally, because Table 4 

has already demonstrated that the counts above 30 µm generated by the large glass beads do not 

behave linearly, it is reasonable to conclude that the improved accuracy of the large glass beads’ 

mass estimate is due to luck. The majority of the observed counts in that region are likely generated 

by alumina alone, which helps to explain why the estimated mass of alumina is so accurate. 

 When the entire simulant was tested with FBRM, the three smallest components generated 

so many chord counts that the three largest components were nearly indistinguishable from 
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background. Figure 24 shows the linear model’s best estimate of the full simulant composition. 

The data collected to make this figure was taken from a slurry containing all components in the 

concentrations specified in Table 1, with one exception: silicon carbide was added at a 

concentration that was within the linear region of Figure 14 (below 0.2 g of SiC). Limiting the 

amount of SiC was necessary because it completely masked the signals from the other components 

if used at its concentration specified in Table 1.  

 

 
Figure 24 – Composition estimate for the full simulant containing 0.1 g SiC, 2.7 g tungsten, 26 g small glass 
beads, 2.4 g alumina, 0.7 g silica, and 1 g large glass beads. Silicon carbide is present in this small concentration 
so that its chord counts remain linear. The model operated on the full range of chord length bins, from 1 to 
1000 µm. (A) Model estimate compared to actual composition. (B) Zoom of (A) to show that SiC is correctly 
estimated, and all three large components are absent. (C) CLH plot showing the model prediction and fit. 

(A) (B) 

(C) 
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 Figures 24A and 24B show that the model is unable to estimate the concentrations of the 

large components in this mixture. These components generated so few chord counts that they were 

indistinguishable among the more numerous particles of the small components. Alongside this 

error, the model overestimated the concentrations of both tungsten and the small glass beads, while 

its silicon carbide estimate remained accurate. Figure 24C, which compares the measured FBRM 

data to the model’s predicted CLH and the best-fit CLH calculated by regression, shows why this 

overestimation occurs. In this system, the linear model underestimated the total counts that the 

particles actually produced, which caused it to overestimate the component concentrations to make 

up the difference. 

 For this system, removing the counts below 30 µm from the model did not allow the model 

to see the large components, nor did it improve the estimation accuracy of the small components. 

Figure 25 shows the composition estimate for the full simulant, using only counts above 30 µm in 

the fit. The composition is shown in Figure 25A alongside the CLH plot in Figure 25B. 

 
Figure 25 – Composition estimate for the full simulant containing 0.1 g SiC, 2.7 g tungsten, 26 g small glass 
beads, 2.4 g alumina, 0.7 g silica, and 1 g large glass beads. The model operated only on chord length bins 
between 30 and 1000 µm to produce this estimate. (A) Model estimate compared to actual composition. 
Alumina, silica, and both glass bead sizes show zero mass. (B) CLH plot using the whole simulant and excluding 
counts below 30 µm. 

(A) (B) 
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Removing the small counts from the model resulted in a less-accurate composition prediction. SiC 

and tungsten were overestimated to a greater degree, and the model failed to detect any of the other 

components. Figure 25B shows that the difference between the model-predicted CLH and the real 

data remains present – with this model, silicon carbide and tungsten together are able to perfectly 

recreate the data set without the excluded counts. Due to the simple shape of the histogram above 

30 µm, excluding the small counts from the model is not feasible when all three small components 

are present. 

4.4 Model Modifications 

 An option for improving the results for mixtures with silicon carbide is adding the length-

square weighted CLH to the model fit. Mettler-Toledo’s iC FBRM software is capable of 

automatically weighting the CLH by the square chord length in each bin. According to Mettler-

Toledo, the unweighted CLH is typically most sensitive to particles with high number densities. 

Square-weighting the CLH emphasizes the longer chord counts and makes the CLH more sensitive 

to particles that make up a large volume fraction of the monitored slurry. While silicon carbide’s 

average size is the smallest of any of the components, it does generate some of the longest chord 

counts of any components, which should allow its concentration to be better represented by a 

square-weighted CLH. 

 Adding square-weighted data to the model requires modifying the least-squares objective 

function. Unweighted and square-weighted histograms have different total chord count numbers, 

which biases the total sum-squared error towards the unweighted fit. To account for this, both 

SSEs were scaled in the objective function 
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where c and csq are the unweighted and square-weighted total counts, from vectors b and bsq 

respectively, uj and ujsq are the rows of the unweighted and square-weighted fingerprint matrices, 

and m is the number of bins in the CLH. This modified objective function combines the sum-

squared errors of the unweighted and the square-weighted CLHs in a way that ignores any 

difference in total chord counts.   

 

 
Figure 26 – (A) Composition estimates for a mixture of 0.1 g SiC and 3.3 g tungsten, with square-weighted data 
in the model. Including the extra data set removes all of the excess amounts predicted in the unweighted-only 
model. This model incorporates the AIC and excludes counts smaller than 30 µm. (B) CLH plot of SiC-tungsten 
mixture. (C) CLH plot of SiC-tungsten mixture, using square-weighted data.  

(A) (B) 

(C) 
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Modifying the model to consider both types of weighting improved the model’s estimate 

of the two-component system containing SiC and tungsten. This model’s composition estimate is 

plotted in Figure 26A, alongside plots containing the system’s CLH, the model’s optimized fit of 

this CLH, and the model’s prediction of the data using the system’s known composition – CLH 

plots are provided for both unweighted (Figure 26B) and square-weighted (Figure 26C) 

histograms. 

 Adding square-weighted data to the model immediately improved the results for the SiC-

tungsten system. The amounts of both components were overestimated, but all of the other 

components that were previously predicted to be present have been removed from the composition 

estimate. The reason for this improvement is found in Figure 26C, which shows that the model’s 

predicted CLH (the black dotted-dashed curve) is similar in shape to the measured CLH (the solid 

blue curve). The total counts predicted by the model are lower than the data shows, but the 

similarity between the shape of the model predicted CLH and the data allows the model to 

compensate for the difference in counts by simply adding more of the components that are actually 

present to the estimate. The square-weighted data conforms more closely to the model’s linear 

assumptions than the unweighted data for this system. 

 Despite the substantially improved estimation accuracy for the SiC-tungsten system, 

adding square-weighted data to the model negatively impacted the accuracy of the model in the 

glass-tungsten system. Figure 27A shows this model’s composition estimate for the same mixture 

of two components used in Figure 19. The unweighted and square-weighted CLHs are plotted in 

Figures 27B and C respectively.  

 



66 
 

 

 

 
Figure 27 – (A) Composition estimates for a mixture of 27 g small glass beads and 3.3 g tungsten, with square-
weighted data in the model. (B) CLH plot of glass-tungsten mixture. (C) CLH plot using square-weighted data. 

 Previously, the AIC had served as an effective means to balance goodness of fit with model 

simplicity. This allowed for alumina to be removed from the composition estimate. However, with 

both unweighted and square-weighted histograms in the model, the AIC no longer balances 

goodness of fit and simplicity, and the estimated mass of alumina returns. Adding the counts below 

30 µm back into the model fit (not shown) did not improve the estimate. The masses of glass and 

tungsten were still estimated accurately, which indicates that their square-weighted histograms still 

conform to the linear model assumptions.  

(A) (B) 

(C) 
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 Lastly, Figure 28 shows the estimation results and CLH plots for the simulant,  consisting 

of all six components. In this figure, the model is applied to the same data set used to create Figures 

24 and 25. 

 

 
Figure 28 – (A) Composition estimates for the completed simulant containing 0.1 g SiC, 2.7 g tungsten, 26 g 
small glass beads, 2.4 g alumina, 0.7 g silica, and 1 g large glass beads, with square-weighted data in the model. 
(B) CLH plot of this mixture. (C) CLH plot using square-weighted data. 

The composition plotted in Figure 28A is similar to the composition calculated without square-

weighted data, shown in Figure 24. SiC (not visible on the plot due to the y-axis dimensions, but 

still present) was estimated accurately, while tungsten and the small glass beads were 

overestimated. All three large components were not seen – this is expected, as Figure 7 previously 

showed that the large components generate a shorter maximum chord length than the small 
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components. Square-weighting effectively amplifies the long chord counts, which for this simulant 

emphasizes the three smallest components. Unlike Figure 27, the data (solid blue curves) and the 

predictions (dotted dashed black curves) in Figure 28B and 28C do not match, indicating that a 

linear model is insufficient to describe the behavior of the entire simulant. 

Adding square-weighted data to the model represents an accuracy trade-off – the model 

gains the ability to predict the composition of the SiC-tungsten system, but loses accuracy when 

examining the other small component pair. If silicon carbide is present in a mixture of this 

simulant, then square-weighting of the data is necessary; without this operation, the model would 

erroneously add other components to the fit to make up the difference between its CLH prediction 

and the observed data. However, as has been shown already in Figures 13 and 14, FBRM struggles 

to properly estimate the concentration of all but small amounts of silicon carbide in water. It would 

be preferable to use a different small component to represent such a small particles in the range of 

1-10 µm in nuclear waste, rather than including it in the simulant mixture and jeopardizing 

FBRM’s ability to monitor the other five components. Particles of this size are present in the waste 

at the Hanford site, so selecting a new material to simulate these particles is necessary if FBRM is 

to be used in the experiments at NETL.  
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CHAPTER 5. Conclusions and Recommendations 

 An empirical model for estimating the composition of complex, multi-species particulate 

slurries has been tested on a six-component mixture designed to approximate the radioactive waste 

at the Hanford site. The model adapts a framework previously used for particle size 

measurement[31] and instead uses it to calculate the abundance of each component in the simulant. 

The model uses constrained regression to find the linear combination of the components’ 

characteristic FBRM histograms that best fits a given data set. Additional model characteristics 

were tested, such as selecting the optimal number of components based on the Akaike Information 

Criterion, to alleviate problems that arose with certain components.  

Initial experiments with the six-component simulant showed difficulty in predicting the 

presence of each component from FBRM data, so the system was broken down into multiple 

smaller pairs. The model was most accurate when applied to a binary system of tungsten shavings 

and small glass beads in the range of 45-90 µm. With this binary mixture, the model was able to 

estimate the masses of each component offline, using averaged FBRM data to remove noise, with 

accuracy up to ±18% of the actual amounts. Applied to noisy data in real time, the model was able 

to track additions of the components into a mixture, with reduced accuracy compared to the case 

in which the CLH is averaged over time. Excluding fine counts (defined as chord counts shorter 

than 30 µm) improves the estimation accuracy to ±10% for this binary system, but the amount of 

data discarded when removing these counts diminishes the model’s capability when it is applied 

to mixtures containing any of three largest components.   

 The model tested in this thesis, which assumes a linear relationship between FBRM counts 

and particle mass, was unable to describe the behavior of silicon carbide particles outside of very 
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low slurry densities. Because of this known nonlinear behavior, the model was only tested on 

silicon carbide slurries at concentrations that behave linearly. Despite this measure, the model was 

still unable to form an accurate composition estimate of silicon carbide mixtures. The CLH from 

silicon carbide did not linearly add tothe other component histograms, and silicon carbide mixtures 

consistently produced more FBRM counts than the linear model predicted. Adding square-

weighted histograms to the model and forcing it to fit both unweighted and square-weighted data 

with its fingerprint histograms improved the estimation accuracy for silicon carbide; however, the 

component masses were still overestimated by 30% in a simple two-component mixture. This 

inaccuracy, combined with the square-weighted model’s reduced performance when applied to 

mixtures of the other five components (adding square-weighted data makes the AIC less capable 

of selecting the components that are present in the mixture), suggests that square-weighted data 

should not be included in the model for analyzing mixtures of the simulant used in this work. To 

improve the accuracy, a nonlinear model is necessary to describe the behavior of silicon carbide. 

 Each of the three largest components (alumina, sand, and  large glass beads) used in the 

waste simulant proved difficult to monitor with a linear FBRM model. All components produced 

observable chord counts when monitored in isolation, and the counts they produced increased 

linearly as more particles were added to the system. However, all three shared an overlapping CLH 

peak. The similarity of these components’ CLHs around the peak impedes quantitative use of the 

FBRM data when they are mixed together. While the model was able to gauge the presence of two 

of the three large components in a mixture containing all of them, it was unable to estimate the 

amounts of each in said mixture.  

 When the model was applied to measured CLHs produced by the complete simulant, it was 

only able to predict the presence of the three smallest components. The amounts of these three 
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small components were overestimated – this is likely a consequence of silicon carbide’s nonlinear 

behavior, as its presence caused a nonlinear increase in chord counts in even a two-component 

mixture. The model was incapable of detecting the presence of any of the large components, but 

detecting their presence in mixtures with any of the small components is likely impossible with 

FBRM. All three large components produce at least an order of magnitude fewer counts per gram 

of material than the small components. Referring back to Table 2 in Section 4.1, none of the large 

components produced more chords than the standard chord count error in any of the small 

components. The low counts produced by the large components, which are potentially 

indistinguishable from noise when the small components are present, and the fact that all of the 

large components’ CLHs overlap completely with those of the small components, combine to 

severely impede the detectability of the large components in the simulant mixture. All three large 

components would need to be present in concentrations far exceeding those listed in Table 1 to be 

detected. 

 The linear empirical model’s ability to predict the composition of the two-component 

mixture of tungsten shavings and small glass beads is a significant result because it demonstrates 

an ability to quantitatively interpret FBRM data for mixtures of multiple particle types. Glass beads 

are translucent and poorly reflect light, which is shown in their micrographs in Figure 6. This 

makes them difficult to observe with FBRM; however, the empirical formulation used in this work 

is able to estimate their concentration in a mixture with opaque tungsten particles, which are more 

numerically dense. It should be noted that this work is significantly more challenging than  

previous quantitative studies where only mixtures containing a single solid species are considered, 

drawing a correlation between chord length and particle size for said species. The results shown 

for the two-component mixture of glass beads and tungsten shavings demonstrates that FBRM is 
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viable for quantitative use on multicomponent systems, and future work may find more systems 

that can be successfully measured by the linear framework presented in this thesis.  

 With regards to the waste simulant used in this work, it is recommended that nonlinear 

empirical modeling be used for future quantitative studies involving the simulant presented here. 

For the reasons discussed in Section 2.3.3, interpreting the FBRM data from the simulant using a 

first-principles approach is impractical. Nonlinear modeling would allow the concentration of 

silicon carbide, which exhibits chord count saturation behavior even at low concentrations, to be 

calculated at higher solid fractions than those used in this work. Including information about the 

interactions between silicon carbide and the other simulant components in the model would 

improve the composition estimates of multicomponent mixtures. Figures 22 and 26 show that a 

clear increase in total counts is observed when silicon carbide is combined with other solid species 

– this behavior is impossible to describe with a linear model. The chord count increase still allows 

for estimation that is accurate within the innate day-to-day variability of the FBRM systems (as 

discussed in Section 4.1), and the shape of the resultant histogram is consistent with the linear 

combination of the fingerprints. However because the chord counts increase by roughly the same 

amount each time silicon carbide is combined with the other components, it should be possible to 

improve the estimation accuracy for these mixtures with a nonlinear model. 

 Additionally, a change of simulant species is recommended if FBRM is to be used in future 

NETL experiments. The three largest components are not ideal reflectors, and if similarly sized 

particles are to be detected amidst the smallest components in the simulant, they must be composed 

of materials that reflect light more clearly. Mitigating chord splitting would allow the large 

components to generate chord counts much longer than those generated by the small components. 

Choosing new components in this way makes the large components detectable, even though they 
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are to be present in trace quantities and generate far fewer counts than the rest of the simulant. 

Because most of the particles in the Hanford waste are thought to be metallic,[3, 8] replacing the 

three large components with more opaque materials seems consistent with the real properties of 

the waste. The six components used in the current simulant are not all simultaneously detectable 

with FBRM, and the most straightforward way to alleviate this problem is by replacing the 

alumina, silica, and large glass beads with different materials. 
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